109. Reaction of Hydroxymethyl- and Alkyl-Substituted Azulenes with Manganese Dioxide

by **Reza-Ali Fallahpour'), Rolf Sigrist,** and **Hans-Jiirgen Hansen***

Organisch-chemisches Institut der Universitat, Winterthurerstrasse 190, CH-8057 Zurich

Dedicated to *Richard Neidlein* on the occasion *of* his 65th birthday

(21.VII.95)

It is shown that the **2-(hydroxymethyl)-l-methylazulenes 6** are being oxidized by activated MnO, in CH,Cl, at room temperature **to** the corresponding **azulene-l,2-dicarbaldehydes** *7 (Scheme 2).* Extension of the MnO, oxidation reaction to I-methyl- and/or 3-methyl-substituted azulenes led to the formation of the corresponding azulene- 1-carbaldehydes in excellent yields *(Scheme 3).* The reaction of unsymmetrically substituted 1,3-dimethylazulenes *(cf.* **15** in *Scheme 4)* with MnO, shows only little chemoselectivity. However, the observed ratio of the formed constitutionally isometric azulene-I-carbaldehydes is in agreement with the size of the orbital coefficients in the HOMO of the azulenes. The reaction of guaiazulene **(18)** with MnO, in dioxane/H,O at room temperature gave mainly the expected carbaldehyde **19.** However, it was accompanied by the azulene-diones **20** and **21** *(Scheme* **5).** The precursor of the demethylated compound **20** is the carbaldehyde **19.** Similarly, the MnO, reaction of **7-isopropyl-4-methylazulene (22)** as well as of 4,6,8-trimethylazulene **(24)** led to the formation of a mixture of the corresponding azulene-l,5-diones and azulene-1,7-diones **20j23** and **25/26,** respectively, in decent yields *(Schemes* 6 and 7). No MnO₂ reaction was observed with 5,7-dimethylazulene.

Introduction. – One of the most versatile reagents for the dehydrogenation of allylic and benzylic alcohols leading to the corresponding carbaldehydes is MnO, in one or the other activated form $(cf. [1]$ and especially $[2]$ ²). We have already reported that this method can successfully also be applied to 2-(hydroxymethyl)azulenes which give the corresponding azulene-2-carbaldehydes [4] *[5].* **A** further example is shown in *Scheme I.*

a) DIBAH in hexane/Et₂O, 0° ; $1a \rightarrow 2$: 75%; $1b \rightarrow 2$: 92%. b) MnO₂ (10-fold excess by weight with respect to **2)/CH2CI,,** room temperature, 10 min. All described reactions have been performed with 'Mangan(1V)-oxid, gefallt, aktiv' from *Merck-Schuchurdt* (see also later remarks).

 $^{\text{a}}$) E = COOCH₃ in this and the following schemes.

^{&#}x27;) New address: lnstitut fur Anorganische Chemie der Universitat, Spitalstrasse **51,** CH4056 Basel.

^{,)} Recently, it has been shown that such dehydrogenation reactions with $MnO₂$ may be improved or even made possible under ultrasound irradiation **[3].**

2-(Hydroxymethy1)- 1-methylazulene **(2),** which is available by **DIBAH** reduction of azulene-1 ,2-dicarboxylate **la** *(cf [6])* or methyl **I-methylazulene-2-carboxylate (lb)** *(cf* **[7]),** can be transformed by MnO, in CH,Cl, into **I-methylazulene-2-carbaldehyde** *(3; Scheme I).*

Results and Discussions. – We were quite astonished to find that the MnO₂ reaction, when performed with the 4,6,8-trisubstituted 2-(hydroxymethy1)- 1-methylazulenes **6,** did not stop at the azulene-2-carbaldehyde stage, but proceeded further to give the corresponding **azulene-l,2-dicarbaldehydes** *7 (Scheme 2).* The best yields of **7** were obtained, when MnO, was applied in a 20-fold excess by weight with respect to **6.** Reduction of the amount of MnO, decreased the yields of **7.** On the other hand, no intermediate products could be observed by TLC or 'H-NMR spectroscopy. However, we observed that **lb** was transformed in a yield of 20% into methyl 1-formylazulene-2-carboxylate upon usual treatment with MnO, in CH_2Cl_2 . This finding could be interpreted in a way that an

a) See *b*) in *Scheme 1*. b) $MnO₂$ (20-fold)/CH₂Cl₂, room temperature, 30 min.

^a) **a** $R^1 = E$, $R^2 = Me$; **b** $R^1 = E$, $R^2 = t$ -Bu. b) **c** $R^1 = Me$, $R^2 = Ph$.

a) See *b)* in *Scheme* 2. b) Distillation at 200"/0.02 mm Hg in a *'Kugelrohr'.*

activation of a Me group at C(1) by σ - and π -acceptor substituents *(e.g. CHO or* $MeOCO$) at $C(2)$ is necessary to allow the oxidation of this group by MnO ,. Therefore, we subjected some 1-methyl-substituted azulenes, having no such substituents at *C(2),* to the oxidation reaction with MnO, in CH_2Cl_2 . To our surprise, we found that this type of azulenes *(cf. Scheme 3)* was easily oxidized by MnO, to give the corresponding azulene-lcarbaldehydes in remarkably good yields').

The oxidation reaction of the pentamethylazulene **9** stopped completely after the formation of one CHO group. This observation is in agreement with the fact that strong σ - and π -acceptor substituents at C(1) lower the HOMO energy of the azulenes and, therefore, will change their reactivity pattern *(cf.* **[9]).** On the other hand, the oxidation of Me-C(3) of the 1-(azulen-1-yl)fumarate 12 shows that moderate σ - and π -acceptor⁴) substituents do not suppress the reaction with $MnO₂$ ⁵).

The oxidation reaction of Me-substituted azulenes with $MnO₂$ in $CH₂Cl₂$, so far described, shows that only Me groups at C(l) and/or C(3) are oxidized by MnO,, *i.e.,* in positions exhibiting the largest orbital coefficients in the **HOMO.** Indeed, the attempt to oxidize **2,4,6,8-tetramethylazulene** with MnO, under the applied conditions was not successful. The starting azulene was recovered unchanged.

AM 1 Calculations indicate that **1,3,4,6,8-pentamethyIazulene** *(9)* and 1,3,4,7-tetramethylazulene possess similar HOMO energies (cf. [12] [13]). However, the tetramethyl derivative exhibits slightly different orbital coefficients at C(1) and C(3) in its HOMO with the larger value at $C(3)$. Therefore, one would expect a certain chemoselectivity in the oxidation reaction of this azulene with MnO,. **As** a substitute for the not easily available **1,3,4,7-tetramethylazulene,** we chose 3-methylguaiazulene **(15),** which is easily

 $3₁$ It seems that, so far, only diarylmethanes have been oxidized at high temperatures with $MnO₂$ to the corresponding ketones $(cf.$ Chapt. 3 in [2]). The oxidation of Me groups to CHO substituents by $MnO₂$ has been reported to occur in methylferrocenes (cf. Chapt. 4 in [2]). However, aromatic Me groups seem not be oxidizable by $MnO₂$ (cf. [8]).

 $4₁$ The X-ray crystal-structure analysis as well as the UV spectra of 1-(azulen-1-y1)fumarates of type **12,** *i.e.,* with a Me substituent at $C(8)$, clearly indicate a largely orthogonal arrangement of the two involved π systems [10]. This means that the fumarate moiety in azulenes such as 12 cannot exert a strong π -acceptor effect.

 $5₁$ On distillation *in vacuo,* we observed the decarbonylation of **13** *(cf:* [I **11).** This reaction shows that 3-methylazulenes can, in principle, be demethylated by selective oxidation and decarbonylation. With respect to the formation of **14,** it should be noted that 14carries the fumarate moiety on its sterically more hindered site. The acid-catalyzed reaction of azulenes, substituted unsymmetrically at the seven-membered ring, with dimethyl acetylenedicarboxylate (ADM) leads, in general, to the introduction of the fumarate and maleate moiety on the sterically less uncumbered site at the five-membered ring [lo].

accessible from guaiazulene (see *e.g.* [13]). Indeed, when **15** was reacted with MnO, in CH,Cl,, we observed a slight preponderance in the oxidation of the Me group at C(3) *(cf. Scheme 4).* Both carbaldehydes formed, namely **16** and **17,** could easily be separated by chromatography on silica gel. Carbaldehyde **16** represents the *Vilsmeier* formylation product of guaiazulene (see *e.g.* [131). Carbaldehyde **17,** however, is new and difficult to obtain by other means.

In a control experiment, guaiazulene **(18),** which had been the matter of extensive autoxidation studies with O_2 in DMF [14] as well as with H_2O_2 in pyridine [15], was also subjected to the oxidation with MnO,. Several experiments in CH,Cl, with 10- to 40-fold amounts of MnO, showed that mainly three products were formed beside non-volatile materials, namely the expected carbaldehyde **19** and the two azulene-diones **20** and **21** *(cf. Scheme 5*). The best results were obtained with the 20-fold amount of MnO₂, which led to an average formation of 4% of carbaldehyde **19,** 13% of the azulene-1,7-dione **21,** and 3 % of the demethylated form **207.**

a) $MnO₂$ (40-fold)/dioxane + 2.5% $H₂O$, room temperature, 18 h; 5% of 18 were still present after 18 h (GC) evidence). The same reaction, however, without the addition of **H20** gave 19% of **19,** 4% of **20,** and 4% of **21.** b) MnO, (40-fold)/dioxane, room temperature, 19 h; yield determined with GC and docosane as standard.

More reproducible results were obtained in dioxane as solvent, especially when small amounts of H,O were present *(Scheme 5).* The carbaldehyde **19** was in these cases again the main product *(cf* also *Exper. Part, Table* 2). The precursor of the demethylated azulene- 1,5-dione **20** seems to be **19,** since it gave *20* under the applied reaction conditions (cf. *Scheme 5).* We suppose that **19** undergoes first a type of *Dakin* rearrangement under the reaction conditions, before it is further oxidized to **20.** Another possibility would be that **19** will undergo first decarbonylation or oxidative decarboxylation to form 7-isopropyl-4-methylazulene **(22)** as intermediate which is then further oxidized to give **20.** However, the control experiment with **²²**- obtained by decarbonylation of **19** with *Wilkinson's* catalyst - showed that this azulene gave, as expected, **20** in a 1 : 1 mixture with its regioisomer **23** *(Scheme 6).* Since the azulene-1,7-dione **23** was not present in the original reaction mixture starting from **18** *(Scheme* **5), 22** cannot be the precursor of **20** in this case. The isolated carbaldehyde **19** was identical with dihydrolactaroviolin *(cf.* **[9]**

⁶) The yields refer to GC analyses with docosane as standard. They were strongly dependent on the quality of the used MnOz. In one experiment, we obtained an isolated yield of **19** and **21** of together over 70%. However, this yield could not be reproduced (see also *Exper. Part,* especially *Table I).*

a) $[RhCl(PPh_1)_3]/$ toluene, 110°, 12 h. b) MnO_2 (30-fold)/CH₂Cl₂, room temperature, 2.5 h; the yields have not been optimized.

and lit. cit. there). Azulene-1,7-dione **21** has already been found in small amounts among several autoxidation products of guaiazulene $(18; cf. [14] [15])$. The two other azulenediones **20** and **23,** the parent structures of which have been synthesized by *Scott* and *Adurns* [161, were identified by their spectroscopic data, especially by their 'H-NMR spectra and corresponding 'H-NOE measurements (see *Exper. Part).*

It seems that for the first time azulene-diones have been formed in appreciable amounts by direct oxidation of its parent hydrocarbons *(cf.* the discussion in [17]). Therefore, we examined also the MnO, oxidation of 4,6&trimethylazulene **(24),** which carries, like **22,** no Me group at the five-membered ring. Indeed, this azulene also led in decent yields to the formation of two azulene-diones, namely **25** and **26,** with a clear preponderance of the corresponding 1,5-dione isomer *25 (Scheme* 7).

a) $MnO₂$ (70-fold amount in three portions)/dioxane $+2.5\%$ H₂O, room temperature, 2 d. Optimization of the isolated yields by GC control.

Both azulene-diones had already been obtained by *Nozoe* and coworkers [141 [151 in small amounts among several other products in autoxidation experiments with **24.** However, according to 'H-NOE measurements, we have to revise the structural assignments made by *Nozoe* and coworkers, *i.e.,* the reported data for the azulene-1,5-dione belong indeed to the azulene-1,7-dione and *vice versa.* The reasoning is quite clear: H-C(3) appears in both structures at lowest field ('H-NMR (CDCl,): 8.07 **(25)** and 7.96 ppm (26) , as *d* with $\frac{3}{2}(2,3) = 6.0 \text{ Hz}^2$. This H-atom shows a reciprocal $H\text{-NOE effect}$

^{&#}x27;) *Nozoe* and coworkers [14] **[IS]** reported 4 Hz.

with the Me group, appearing as a **s** at **2.34** ppm in both azulene-diones. However, in the case of **25,** this Me group shows no further 'H-NOE effect. In contrast to this finding, the Me group of the other isomer shows a 'H-NOE effect with the H-atom which appears as a *s* at 7.07 ppm. Therefore, the second isomer, being the minor product in our experiments, must have the structure of the 1,7-dione **26** (for further details, see *Exper. Part*).

It is of interest to note that all three azulenes, **18,22,** and **24,** are oxidized by MnO, at those C-atoms which have the largest orbital coefficients in the HOMO. When both C-atoms at the seven-membered ring, which exhibit the second largest orbital coefficients at the HOMO, i.e., **C(5)** and C(7), are occupied by Me groups, no oxidation reaction with MnO₂ in CH₂Cl₂ is observed. For example, 5,7-dimethylazulene was recovered unchanged after treatment with $MnO₂$ in $CH₂Cl₂$ at room temperature. This work will be continued.

We thank cand. chem. *Z. A. Molnar* and *Daniela Ziegler* for skilful help in laboratory work, Prof. *M. Hesse* and his coworkers for mass spectra, Prof. *W. von Philipsborn* and his coworkers for *NMR* support and *'H-NOE* measurements, and *H. Frohofer* and *J. Kessler* for elemental analyses. The financial support of this work by the *Swiss National Science Foundation* is gratefully acknowledged.

Experimental Part

General. See *[5] [6].*

Procedure for the Reduction of Azulene-2-carboxylates and Azulene-1.2-dicarboxylates with DIBAH (see also *[6]).* The esters were dissolved in Et₂O (30 ml/mmol of ester) and cooled to 0^o. At this temp., DIBAH in hexane *(ca.)* 0.7*M* soln.; 10 mol-equiv. excess) was slowly added. The mixture was stirred for an additional h at 0°. Then, AcOEt and *H₂O* were added dropwise. The deposited inorg. salts were dissolved in 2N NaOH. The org. phase was separated and the aq. phase extracted twice with Et₂O. The Et₂O phases were dried (MgSO₄), and their residue was purified by *CC* on silica gel (hexane/Et₂O).

Procedure for the Oxidation Reaction with MnO_2 *in* CH_2Cl_2 *. The corresponding azulene was dissolved in* CH_2Cl_2 (10 ml/0.4 mmol of azulene) and the indicated amount of MnO₂⁸) was added in one portion if not otherwise stated. This mixture was stirred at r.t. for *30* min if not otherwise stated. The mixture was then filtered over a short silica-gel column with *CH2C1,* as eluant. *CH2C1,* was distilled *off* and the residue further purified by *CC* (silica gel; hexane/Et,O mixtures), bulb-to-bulb distillation, and/or recrystallization.

1. Formation **of** Azulene-carbaldehydes. - **1.1.** *I-Methylazulene-2-carbaldehyde (3).* 1.1.1. *2-(Hydroxymethyl)-I-methylazulene (2):* 0.8-mmol runs gave **2** in yields of *75%* (from la [IS]) and *92%* (from lb *[7]).* Blue crystals from hexane/Et,O. M.p. *68". Rr0.19.* IR **(KBr):** *3684s, 3602s, 3021m, 2923m,* 1601s, *1575s, 1381m, 988m, 788m, 556m, 527m. 'H-NMR: 8.23 (d, J(7,8)* = *9.8, H-C(8)); 8.21 (d, J(5,4)* = *9.4, H-C(4)); 7.52* (t-like, $J(5,6)$ \approx $J(7,6)$ \approx 9.9, H-C(6)); 7.37 (s, H-C(3)); 7.10 (t-like, $J(8,7)$ \approx $J(6,7)$ \approx 9.5, H-C(7)); 7.07 (t-like, $J(4,5) \approx J(6,5) = 9.4$, H-C(5)); 5.07 (s, CH₂OH); 2.49 (s, Me-C(1)).

1.1.2. Dehydrogenation of 2: 0.58 mmol of **2** were reacted with *2.0* g of MnO, to give *65* % of *3.* Blue crystals from hexane/Et,O. **M.p.** *119-120". Rf 0.17. 'H-NMR: 10.59* **(s,** *CHO); 8.40 (d, J(7,8)* = *9.7, H-C(8)); 8.33 (d,* $J(5,4) = 9.4$, H-C(4)); 7.68 (s, H-C(3)); 7.60 (t-like, $J(7,6) \approx J(5,6) = 9.8$, H-C(6)); 7.09 (t-like, $J(8,7) \approx J(6,$ $7) = 9.8$, $H-C(7)$; 7.04 (*t*-like, $J(4,5) \approx J(6,5) = 9.7$, $H-C(5)$; 2.88 (*s*, Me-C(1)).

1.2. 4,6.8-Trimethylazulene-I ,2-dicarbaldehyde (7a). 1.2.1. *2- (Hydroxymethyl)-I.4,6.8-tetramethylazulene* (6a). See *[6]. 1.2.2. Oxidation of* 6a: *0.93* mmol of6a were reacted with *4.0* g of MnO, to give *47%* of7a. Red needles from hexane/Et₂O. M.p. 142-143^o. R_f 0.10. UV (hexane): λ_{max} 387 (sh, 3.53), 3.66 (3.79), 321 (4.35), 304 (4.31), 292 (sh, *4.19), 251 (3.95),218 (4.09); l,i, 360 (3.77), 308 (4.30), 272 (3.92), 230 (3.98). 'H-NMR: 10.91* **(s,** *C(1)-CHO); 10.76* **(s,** *C(2)-CHO); 7.81* **(s,** *H-C(3)); 7.48* **(s,** *H-C(7)); 7.43* **(s,** *H-C(5)); 3.15 (s, Me-C(8)); 2.96* **(s,** *Me-C(4)); 2.72* **(s,** *Me-C(6)). CI-MS (NH3): 227* (100, *[M* + *1]+).*

1.3. 6-(tert-Butyl)-4,8-dimethylazulene-l,2-dicarbaldehyde (7b). *1.3.1. 6-(tert-Butyl)-2-(hydroxymethyl)- 1,4,8-trimethylazulene* (6b). See *[6]. 1.3.2. Oxidation of* 6b: *0.27* mmol of6b were reacted with *1.5* g of MnO, to give

 $*$) If not otherwise stated, the oxidation reactions were performed with *ca*. 10-year-old batch of MnO₂ ('gefällt, aktiv') from *Merck-Schuchardt.*

41% of **7b**. Red crystals from hexane/Et₂O. M.p. 126-127°. R_f 0.17. UV (hexane): λ_{max} 386 (sh, 3.61), 365 (3.90), 322 (4.50), 258 (4.22), 220 (4.10); λ_{min} 358 (3.89), 276 (3.95), 232 (3.99), 211 (4.02). IR (CH₂Cl₂): 2971m, 1752w, 1633.s, 1579m, 1523m, 1471m, 1421m, 1329m, 1244m, 1223m, 1098w, 896m, 866m. 'H-NMR: 10.90 **(s,** C(I)-CHO); 10.77 (s, C(2)-CHO); 7.79 **(s,** H-C(3)); 7.72 (s, H-C(7)); 7.67 **(s,** H-C(5)); 3.19 (s, Me-C(8)); 3.00 (s, Me-C(4)); 1.50 **(s,** *t-Bu).*

1.4. *4,8-Dimethyl-6-phenylazulene-l,2-dicarbaldehyde* **(7c).** 1.4.1. *2-(Hydroxymethyl)-l,4,8-trimethyl-6 phenyluzulene* **(6c).** It was obtained in a yield of 95 % from methyl **1,4,8-trimethyl-6-phenylazulene-2-carboxylate** $(0.200 \text{ g}, 0.66 \text{ mmol})$ [7]. Blue crystals from hexane/Et₂O. M.p. 101–102°. $R_f 0.30$. ¹H-NMR: 7.60–7.30 *(m, 5 arom.*) H); 7.14 **(s,** H-C(5)); 7.1 1 **(s,** H-C(7)); 5.13 (s, CH,OH); 3.15 (s, Me-C(8)); 3.06 (s, Me-C(4)); 2.54(s, Me-C(1)).

1.4.2. *Oxidution* **oj6c:** 0.36 mmol of **6c** were reacted with 2.0 g of MnO, to give 43 % **of 7c.** Red crystals from hexane/Et,O.M.p. 151-152". R10.22. UV(hexane): **Amax** 378 (sh, 3.45),330 (3.89), 317 (3.90), 253 (3.75),240 (3.76); *I_{min}* 323 (3.88), 280 (3.59), 247 (3.75), 224 (3.70). IR (CH₂Cl₂): 2926m, 1672s, 1636s, 1579s, 1518w, 1422w, 1350s, 1334s, 896m, 860m. 'H-NMR: 10.96 **(s,** C(1)-CHO); 10.79 **(s,** C(2)-CHO); 7.88 (s, H-C(3)); 7.75 (s, H-C(7)); 7.70 (s, H-C(5)); 7.67-7.64 (m, 2 arom. H); 7.55-7.51 (m, 3 arom. H); 3.24 **(s.** Me-C(8)); 3.05 **(s,** Me-C(4)).

^I*.5. 4,6,R-Trimethylazulene-l-carbaldehyde* **(10).** *1.4.6.8-Tetramethylazulene* **(8;** 0.10 g, 0.54 mmol) [9] was oxidized with MnO, *(2.0* g) to give pure crystalline **10** (0.095 g, 84%), identical with an authentic sample [IY].

1.6. *3.4,6,8-Tetrume~h,ylazulene-l-curbaldehydr* **(11).** *1.3.4,6.8-Pentamethylazulene* **(9;** 0.1 5 g, 0.75 mmol) [121 was oxidized with MnO, (4.5 g) to give pure crystalline **11** (0.130 g, 81 %), identical with an authentic sample [12].

1.7. Dimethyl *(E)-I-(3-Formyl-S-isopropyl-8-methylazulen-I-yl)ethene-I ,2-dicarboxylute* **(13).** *Dimethyl* (E)- *1-(5-isopropyl-3,8-dirnethyluzulen- Iyl)ethene-l,2-dicarboxylate* **(12;** 0.20 g, 0.59 mmol) [20] was oxidized with MnO₂ (4.0 g) to give pure crystalline **13** (0.160 g, 77%). Red crystals from hexane/Et₂O. M.p. 83°. R_f 0.16. UV (hexane): Amax 394 (3.95), 310 (4.43), 242 (4.48), 231 (sh, 4-46), 214 (sh, 4.41); *I,,,,"* 351 (3.71), 270 (4.04), 207 (4.38). IR (KBr): 2952m, 1719s, 1641s, 1439s, 1392m, 1356m, 1295m, 1249s, 1203m, 1178m, 1146m, 1069w, 1020w, 915w. ¹H-NMR: 10.26 (s, CHO); 9.81 *(d, J*(6',4') = 1.9, H-C(4')); 7.90 *(s, H-C(2'))*; 7.68 *(dd, J*(7',6') = 10.8, *5(4,6)* = 1.9, H-C(6')); 7.44 *(d, J(6,7')* = 10.9, H-C(7')); 7.18 **(s.** H-C(2)); 3.78, 3.56 (2s, COOMe); 3.22 *(sept.,* $J = 6.9$, Me₂CH); 2.80 (s, Me–C(8)); 1.41 (d, $J = 6.9$, Me₂CH). Anal. calc. for C₂₁H₂₂O₅ (354.41): C 71.17, H 6.26; found: C 71.39, H 6.54.

1.7.1. *Dimethyl (E)-I-(5-Isopropyl-8-methylazule~-I-yl)ethene-l.2-dicarboxylate* **(14).** Distillation of **13** in a 'Kugelrohr'at 200"/2. Torr gave **14** in a yield of 90%. Green crystals from hexane/Et,O. M.p. 77". *R,* 0.42. UV (hexane): λ_{max} 400 (3.57), 359 (sh, 3.58), 343 (3.80), 286 (4.58), 244 (4.46), 219 (4.32); λ_{min} 366 (3.52), 337 (3.78), 260 (4.17), 225 (4.31), 212 (4.30). IR (CH₂Cl₂): 2963s, 2871m, 1719s, 1606m, 1435m, 1371m, 1243s, 1204m, 1171m, 11 13m, 1020m, 896m. 'H-NMR: 8.25 *(d, J(6,4')* = 2.0, H-C(4')); 7.54 *(d,* J(2',3') = 3.9, H-C(3')); 7.39 *(dd,* H-C(7')); 3.75, 3.53 (2s, COOMe); 3.05 *(sept., J* = 6.9, Me,CH); 2.73 (s, MeeC(8')); 1.35 *(d, J=* 6.9, Me,CH). ELMS: 327 (15, *[M* + I]+), 326 (78, *M+),* 267 (28), 207 (IS), 193 (20), 192 (17), 191 (25), 178 (28), 165 (74), 152 (26), 59 (100). $J(7',6') = 10.8$, $J(4',6') = 1.9$, $H-C(6')$; 7.26 $(d, J(3',2') = 3.9$, $H-C(2'))$; 7.11 $(s, H-C(2))$; 7.05 $(d, J(6',7') = 10.9$,

1.8. *5-Isopropyl-3,8-dimethyl- and 7-Isopropyl-3.4-dimethylazulene-I-curbaldehyde* **(16** and **17,** resp.). *3- Methylguuiuzulene* **(15;** 0.060 *g,* 0.28 mmol) [I31 was oxidized with MnO, (2.4 g). Careful CC on silica gel (hexane/Et,O 4: 1) gave in a first fraction **16** (0.030 g, 47 %), followed by **17** (0.020 g, 31 *YO).* No other products were observed.

Data of **16**: R_f 0.38. Identical with those of an authentic probe [13].

Data of 17: Violet oil. R_f 0.20. UV (hexane): λ_{max} 404 (4.07), 387 (4.04), 319 (sh, 4.38), 312 (4.55), 306 (4.52), 300 (sh, 4.48), 247 (4.44), 227 (4.41), 215 (4.39); *I,,,* 395 (4.00), 344 (3.67), 309 (4.51), 269 (4.03), 233 (4.38), 221 (4.37) . IR (CH_2Cl_2) : 2966m, 1703m, 1640s, 1537w, 1513w, 1445s, 1428s, 1394s. ¹H-NMR: 10.26 (s, C(1)-CHO); $J(6,5) = 10.8$, H-C(5)); 3.15 (sept., $J = 6.9$, (CH₃)₂CH-C(7)); 3.08 (s, Me-C(4)); 2.84 (s, Me-C(3)); 1.39 (d, 9.62 *(d, 3(6,8)* = 1.8, H-C(8)); 7.93 *(s, H-C(2))*; 7.55 *(dd, 3(5,6)* = 10.7, $J(8,6)$ = 1.8, H-C(6)); 7.29 *(d, 3)* $J = 6.9$, $(CH_3)_2CH-C(7)$).

1.9. *Oxidation of Guaiazulene* **(1).** Since this azulene was readily available *(Fluku, puriss.),* and, beside the expected carbaldehyde 19 (dihydrolactaroviolin; *cf.* [9]), the formation of 7-isopropyl-4-methylazulene-1,5-dione **(20)** as well as of *5-isopropyl-3,8-dimethylazulene-l,7-dione* **(21,** *cf:* [I41 [15]) was observed, extensive screening studies were performed with respect to the influence of the provenance of $MnO₂$ and the solvent *(cf. Tables 1* and *2).* In first experiments with the old batch of Mn0,8) and CH,CI, as solvent, we obtained **19** and **21** in yields **up** to 70%. Compound 20 was not isolated in these cases. Later experiments with a new lot of MnO₂ (Merck-Schuchardt; Lot 451 14980) gave much lower yields of **19-21.** The results of anal. screening experiments with docosane as GC standard are collected in *Table 1*. As can be seen, the oxidation reactions with MnO₂ in CH₂Cl₂ are only badly

Amount [g]	Time	Yields [%]				
of MnO_2^b)	[min]	18	19	20	21	
$1.0\,$ \boldsymbol{A}	5	73	$\mathbf{0}$	$\bf{0}$	$\bf{0}$	
	20	63	1.3	$\bf{0}$	2.9	
	90	56	1.8	$\bf{0}$	3.3	
2.0 \boldsymbol{A}	$\mathsf S$	3	3.5	2.9	12.6	
	30	$\pmb{0}$	4.4	3.3	13.6	
2.5 \boldsymbol{A}	$\mathsf S$	31	2.0	$\bf{0}$	6.8	
	20	15	3.0	1.2	7.5	
	30	14	3.2	1.2	8.0	
4.0 \boldsymbol{A}	5	$\overline{7}$	3.0	1.5	9.6	
	20	1	3.5	1.7	10.0	
	30	0.5	4.0	1.9	10.0	
B 1.0	5	72	$\pmb{0}$	$\bf{0}$	2.3	
	30	70	$\bf{0}$	$\bf{0}$	2.3	
	90	48	1.7	$\bf{0}$	3.2	
В 2.5	5	36	1.4	$\bf{0}$	5.4	
	20	25	2.5	$\bf{0}$	6.5	
	30	21	2.8	$\pmb{0}$	5.6	
B 4.0	5	15	2.6	$\pmb{0}$	8.2	
	20	4	3.6	1.5	9.0	
	30	$\overline{\mathbf{c}}$	$3.8\,$	1.5	9.3	

Table 1. Oxidation of Guaiazulene (18) with MnO_2 in CH_2Cl_2 at r.t.^a)

^a) *Ca.* 0.10 g of **18** were oxidized with MnO₂, added in one portion, in 11 ml of CH₂Cl₂ in the presence of 0.030-0.035 g docosane as GC standard. Analysis on a **GC/MS** instrument *(Hewlett-Packard,* model 5890; with mass selective detector, model 5971); column: *WCOT*, *HP-5* (25 m/0.2 mm). t_R (20) < t_R (19) < t_R (21). b) *A*: 10-year-old batch of MnO₂ (Merck-Schuchardt); B: new batch of MnO₂ (Merck-Schuchardt).

Solvent	Time	Yields [%]				
		18	19	20	21	
$MeCN^b$	5 min	ca. 16	4		6	
	30 min	ca ₅		0	5	
DMSO ^b	5 min	ca. 66	≤ 1	0		
	30 min	ca. 50	\leq 1	0	0	
Benzene	5 min	12	4			
	30 min	ca. 1	6	3		
Pyridine	5 min	93	0	0		
	30 min	84				
	89 h	40	4.4	0		
Acetone	5 min	42	5			
	34 min	24	10			
	1 _h	20	11	4	8	
Dioxane ^c	5 min	45 (39)	8(9)	2(2)	4(5)	
	30 min	29(23)	12(12)	3(3)	4(6)	
	16.5 _h	1(1)	19(18)	4(4)	4(3)	

Table 2. *Oxidation of Guaiazulene* **(IS)** *with MnO, in Various Solvents at r.t.=)*

Table 2 (cont.)

") *Ca.* 0.15 g of **18** were oxidized with a new batch MnO, (6.0 g; *Merck-Schuchardr,* Lot. 451 14980), added in one portion, in 15 ml of the solvent in the presence of docosane *(ca.* 0.05 g) as GC standard. See *a)* in *Table 1.*

b, No internal standard was added.

 $c₁$ In parentheses the values obtained with a different batch of MnO, *(Merck-Schuchardt).*

d, Results of oxidation experiments with 20 mg of **18** in 2.0 g of dried dioxane to which the indicated percentage of H₂O was added. Standard: docosane; MnO₂: 0.80 g. The application of ultrasound did not improve the yields.

^c) In parentheses the results of a prep. run with 1.50 g of **18** (see 1.9.1).

reproducible. The best results were obtained with the > 10 year old batch of MnO₂, leading to *ca.* 13% of **21**, 4% of **19,** and 3% of **20.** Much better reproducible results were obtained with MnOz (Lot 451 14980) in dioxane and varying small amounts of H20 *(cf. Table* 2).

1.9.1. *Oxidation of* 18 *in Dioxane/H₂O*. The azulene (1.50 g, 7.56 mmol) and docosane (0.50 g as internal standard) were dissolved in dioxane (1 50 ml), and H20 (3.75 ml, 2.5 %) and MnOz *(60* g; see *Table* 2) were added. The mixture was stirred under N₂ during 18 h at r.t. GC showed the presence of still 5% of 18. MnO₂ was removed by centrifugation (4000 rpm) and the soln. filtered through *Celite*. The MnO₂ was washed 4-times with dioxane (70 ml) and the extracts also filtrated through the *Celite.* Further extraction overnight in a *Soxhlet* apparatus with CH_2Cl_2 showed that all products had been removed from MnO₂. The residue of the dioxane extracts (1.6 g) was subjected to CC (85 g silica gel; CH₂Cl₂) to give the mixture of 19-21 as a red-brown oil. The separation of 19-21 was realized by low-pressure chromatography on a *Lobar* Bcolumn (hexane/AcOEt 5 :l). The **first** fractions gave pure **19** (GC: > 99%; 0.301 g, 19%), followed by **21** (GC: 97%; 0.198 g, 11 %) and finally by **20** (GC: > 98%, 0.088 g, 5 *Yo).*

Data of 19: Dark red amorphous powder. M.p. 65–68°. R_f 0.45 (Alox; hexane/Et₂O 3:2). t_R 14.34 min⁹). All other data were identical with those of an authentic sample [9]. Anal. calc. for $C_{15}H_{16}O (212.29)$: C 84.87, H 7.60; found: C 84.61, H 7.61.

Data of 20: Yelow-ochre microcrystalline powder after sublimation at $80-110^{\circ}/2 \cdot 10^{-4}$ Torr in a 'Kugelrohr'. M.p. 111-113°. $R_f 0.20$ (Alox; hexane/Et₂O 3:2). UV (hexane): λ_{max} 400 (sh, 3.54), 380 (3.76), 361 (3.76), 343 (3.71), 310(3.70),270(sh,4.20),256(4.42),250(sh,4.35),240(sh,4.20); **A,,,370(3.70),350(3.69),334(3.68),284(3.61),** 225 (4.09). IR (CHCI₃): 3040w, 3008m, 2968m, 2930m, 1711s, 1647s, 1581s, 1569s, 1465m, 1417m, 1388m, 1378m, 976w, 926w, 900w, 833s. 'H-NMR: 8.21 *(dd,* J(2,3) = 6.0,1(8,3) = 0.7, H-C(3)); 7.28 *(d,* J(8,6) = 1.9, H-C(6)); 6.90 (dd, $J(6,8) = 1.9$, $J(3,8) = 0.7$, $H-C(8)$); 6.53 (d, $J(3,2) = 6.0$, $H-C(2)$); 2.78 (sept., $J = 6.8$, $Me₂CH$); 2.31 (s, Me-C(4)); 1.24 *(d, J* = 6.8, Me₂CH). ¹H-NOE (400 MHz, CDCl₃): 8.21 $(H-C(3)) \rightarrow 6.53$ *(s, H-C(2)), 2.31 <i>(m,* $Me- C(4)$); 6.90 (H-C(8)) \rightarrow 2.78 (s, Me₂CH), 1.24 *(m, Me₂CH)*; 2.31 (Me-C(4)) \rightarrow 8.21 (s, H-C(3)). GC/MS (t_R) 12.85 min⁹)): 214 (36, M⁺), 186 (21, [M – CO]⁺), 171 (100), 143 (12), 141 (9), 128 (33), 115 (18). Anal. calc. for $C_{14}H_{14}O_2$ (214.27): C 78.48, H 6.59; found: C 78.76, H 6.72.

Data of **21** (*cf.* [14] [15]): Yellow-ochre crystals from hexane/Et₂O. M.p. 104-105° (94° [15]). R_f 0.15 (Alox; hexane/Et₂O 3:2). UV (hexane): λ_{max} 414 (sh, 3.28), 390 (sh, 3.59), 371 (3.65), 302 (3.92), 244 (4.36), 231 (4.37); λ_{min} 360 (3.63), 277 (3.85), 237 (3.65), 212 (4.12). IR (CH₂C₁₂): 2968m, 2928m, 1700s, 1638m, 1602s, 1582s, 1465w, 1381w, 1322w, 886w. 'H-NMR: 6.75 *(d,* J(8,6) = 1.8, H-C(6)); 6.63 *(d, J(6,8)* = 1.8, H-C(8)); 6.23 (q-like, $J(Me-C(3),2) = 1.3$, H-C(2)); 2.75 *(sept., J* = 6.8, Me₂CH); 2.63 *(s, Me-C(8))*; 2.29 *(d, J(2, Me-C(3))* = 1.3, $Me-C(3)$); 1.25 *(d, J* = 6.8, $Me₂CH$). GC/MS ($t_R 15.05⁹$)): 228 (41, M⁺), 200 (21, [M - CO]⁺), 185 (100), 157 (12), 142 (28), 141 (20), 128 (18), 115 (17). Anal. calc. for C₁₃H₁₆O₂ (228.29): C 78.92, H 7.06; found: C 78.92, H 7.07.

1416

 t_R refers to *HP-5* column (cf. *Footnote a* in *Table 1*) and a temp. program of 20°/min from 100 (2 min) to 240° (10 min), carrier gas: He.

1.9.2. *Oxidation of19 in Dioxane:* The carbaldehyde *(5* mg) and docosane (8 mg) were dissolved in dioxane (2 ml) , MnO₂ (0.81 g) was added, and the mixture stirred under N₂ for 19 h at r.t. MnO₂ was removed by centrifugation, and the dioxane soh, the color of which had changed from red to yellow, subjected to GC analysis. Only the peak **of20** was found. The peak area corresponded to a yield of 14% **of 20.**

2. Formation of Azulene-diones. 2.1. *Oxidation of 7-Isopropyl-4-methylazulene* **(22).** 2. I, 1. *Decarbonylation of* **19.** The carbaldehyde (0.0457 g. 0.215 mmol) and [RhCI(PPh,),] (0.250 g, 0.245 mmol) were dissolved in dried toluene (3 ml), and the mixture was heated under **Ar** for 12 h at reflux. TLC showed only traces **of 19.** Hexane (10 ml) was added and the precipitate filtered after **1** h. The filtrate was distilled in a rotatory evaporator. The residue (0.0232 **g,** 58%) represented pure **22.** *R,* 0.60 (Alox; hexane/Et?O 3:2). 'H-NMR: 8.33 *(d,* J(6,8) = 2.0, $J(1,2) = J(3,2) = 3.8$, $J(1,3) = 1.5$, $H-C(1)$, $H-C(3)$; 7.13 *(d, J(6,5)* = 10.6, $H-C(5)$; 3.09 *(sept., J* = 6.8, Me,CH); 2.89 (Me-C(4)); 1.37 *(d, J* = 6.8, Me2CH). GC-MS *(tR* 10.19 min')): 184 (59, *Mf'),* 169 (100, *[M* -Me]+), **154(31,[M-2Me]+),153(28),** 152(17), 141 (12), 128(13), 115(13). $H-C(8)$; 7.82 $(t, J(1,2) = J(3,2) = 3.8$, $H-C(2)$; 7.48 $(dd, J(5,6) = 10.6$, $J(8,6) = 2.0$, $H-C(6)$; 7.33, 7.30 (2dd,

2.1.2. *Reaction* **of22** *with MnO,.* Azulene **22** (0.023 g, 0.12 mmol) and docosane (0.0085 g) as standard were dissolved in CH₂Cl₂ (3 ml), MnO₂ (0.69 g) was added and the whole mixture stirred under Ar at r.t. GC Analysis showed that all **22** was consumed after 2.5 h. The mixture was filtered over *Celite* and the filter cake washed several times with CH₂Cl₂. The residue of the CH₂Cl₂ soln. was chromatographed on a short silica-gel column (hexane/ Et2O 3 :2) and then subjected to low-pressure HPLC on a *Lobar' B* column (hexane/AcOEt **5:l)** to give *ca.* **1** mg (4%) of **20** and also *ca.* **1** mg (4%) of *S-isopropyl-8-methylazulene-1.7-dione* **(23).**

Data of 23: R_f 0.20 (Alox; hexane/Et₂O 3:2). **IR** (CHCl₃): 3018w, 3008w, 2968m, 2931w, 2875w, 1705s, 1638m, 1584s, 1465w, 1370w, 1341w, 1306w, 1148w, 1013w, 887w, 834m. 'H-NMR: 7.67 (d,J(2,3) = 5.8,H-C(3)); 6.73 *(d,* $J(4,6) = 1.8$, H-C(6))¹⁰); 6.61 *(d, J*(6,4) = 1.8, H-C(4))¹⁰); 6.37 *(d, J*(3,2) = 5.8, H-C(2)); 2.72 *(sept., J* = 6.8, Me₂CH); 2.63 (s, Me-C(8)); 1.24 *(d, J*(6.8, *Me₂CH*-C(5)). GC-MS *(t_R* 12.99 min⁹)): 214 *(62, M⁺)*, 199 *(4,* $[M - Me]^+$), 186 (16, $[M - CO]^+$), 171 (100), 143 (19), 141 (10), 128 (39), 115 (22).

2.2. *Oxidation of 4,6,8-Trimethylazulene* **(24).** The freshly distilled azulene (0.292 g, 1.72 mmol) [21] and docosane (0.0991 g) as internal standard were dissolved in dioxane (31 ml), and **H20** (0.72 ml) was added. The mixture was stirred under N₂ at r.t. and MnO₂ added within 2 d in three portions (in total 21.1 g). After this time, GC analysis showed the presence of *ca.* 2% **24.** The workup procedure was the same as described for **18** *(cf: 1.9.1).* The separation of the two azulene-diones **25** and **26** was realized on a *Lobar B* column with hexane/AcOEt 5 :1 to give in a first fraction pure 25 $(0.070 \text{ g}, 20\%; \text{GC} > 99\%)$, followed by a small amount of 26 $(0.011 \text{ g}, 3\%; \text{GC}$ $> 99.5\%$).

Data of 4,6,8-Trimethylazulene-1,5-dione (25; cf. [14] [15]): Yellow-ochre needles from hexane/AcOEt and then toluene. M.p. 218–220° ([15]: 118°). R_f 0.25. IR (CH₂CI₂): 2927s, 2855s, 1697s, 1585m, 1461s, 1377s, 1152m, 836m. ¹H-NMR: 8.07 (d, J(2,3) = 6.0, H-C(3)); 7.10 (d-like, J(Me-C(6,7) = 1.1, H-C(7)); 6.40 (d, J(3,2) = 6.0, H-C(2)); 2.66 (s, Me-C(8)); 2.34 **(s,** Me-C(4)); 2.28 *(d,* J(7, Me-C(6)) = 1.0, Me-C(6)). 'H-NOE (400 MHz, $CDC1₃$): 8.07 (H-C(3)) \rightarrow 6.40 (s, H-C(2)), 2.34 *(m, Me-C(4))*; 2.66 (Me-C(8)) \rightarrow 7.10 (s, H-C(7)); 2.34 $(Me- C(4)) \rightarrow 8.07$ (s, H-C(3)); 2.28 $(Me- C(6)) \rightarrow 7.10$ (s, H-C(7)). Anal. calc. for $C_{13}H_{12}O_2$ (200.24): C 77.98, H 6.04; found: C 77.69, H 6.02.

Data of 4,6,8-Trimethylazulene-l,7-dione **(26;** *cf:* [14] **[15]):** Yellow-ochre crystals from toluene. M.p. 196-198" **([15]:** l2Oo). Rf0.23. IR(CH,Cl2): 2926s, 2855m, 1698s, 1587s, 1458w, 1375w, 1203w, 1152w, 836m. 'H-NMR: 7.96 $(d, J(2,3) = 6.0, H-C(3))$; 7.07 (d-like, $J(Me-C(6),5) = 1.1, H-C(5))$; 6.28 $(d, J(3,2) = 6.0, H-C(2))$; 2.63 (s, Me-C(8)); 2.34 (s, Me-C(4)); 2.25 *(d,* J(7, Me-C(6)) = 1.0, Me-C(6)). 'H-NOE (400 MHz, CDCI,): 7.96 $(H-C(3)) \rightarrow 6.28$ (s, H-C(2)), 2.34 (m, Me-C(4)); 7.07 $(H-C(5)) \rightarrow 2.34$ (m, Me-C(4)), 2.25 (s, Me-C(6)); 6.28 $(H - C(2)) \rightarrow 7.96$ (s, $H - C(3)$); 2.66 (Me-C(8)) \rightarrow no effect; 2.34 (Me-C(4)) \rightarrow 7.96 (s, H-C(3)), 7.07 (s, H-C(5)); 2.25 (Me–C(6))→7.07 (s, H–C(5)). ¹H-NMR: (C₆D₆): 6.98 (d, H–C(3)); 6.32 (q-like, H–C(5)); 5.81 (d, H–C(2)); 2.90 (s, Me-C(8)); 2.10 (s, Me-C(6)); 1.51 (s, Me-C(4)).

On standing over several days in CDCI, soh, *26* was partly transformed into a new product with 'H-NMR signals at: 7.28 $(d, J = 6.0, 1 \text{ H})$; 6.68 $(d, J = 6.0, 1 \text{ H})$; 5.93 $(q\text{-like}, J > 1, 1 \text{ H})$; 2.28 (s, Me) ; 1.86 $(d, J > 1, \text{Me})$; 1.56(s, Me).

lo) Assignments according to the chemical shifts in the parent compound [16].

REFERENCES

- [I] G. Procter, in 'Comprehensive Organic Synthesis', Vol. **7,** 'Oxidation', Ed. **S.** V. Ley, Pergamon Press plc, Oxford, **1991, p.305.**
- **[2]** a) A. J. Fatiadi, *Synthesis* **1976, 65** and **133;** b) A. J. Fatiadi, in 'Organic Synthesis by Oxidation with Metal Compounds', Eds. W. **J.** Mijs and **C.** R. H. **I.** de Jonge, Plenum Press, New York-London, **1986,** p. **119.**
- [3] T. Kimura, M. Fujita, T. Ando, *Chem. Lett.* **1988, 1387.**
- **[4] A.** A. **S.** Briquet, H.-J. Hansen, *Helv. Chim. Acta* **1994, 77, 1921.**
- *[5]* R.-A. Fallahpour, H.-J. Hansen, *Helv. Chim. Acta* **1995, 78, 231.**
- **[6]** R.-A. FdlkdhpOUr, H.-J. Hansen, *Helv. Chim. Acta* **1992, 75, 2210.**
- **[7]** A. J. Rippert, H.-J. Hansen, *Helv. Chim. Acta* **1995,78,238; A.** J. Rippert, Ph. D. Thesis, UniversityofZurich, **1994; R.** Ostaszewski, H.-J. Hansen, *Helv. Chim. Acta* **1995, 78,** in preparation.
- **[8]** H. Offermanns, G. Pretscher, in 'Houben-Weyl, Methoden der organischen Chemie', 4th edn., Georg Thieme Verlag, Stuttgart, **1983,** Bd. **E3,** p. **131ff.**
- **[9] A.** Magnussen, P. Uebelhart, H.-J. Hansen, *Helv. Chim. Acta* **1993, 76, 2887.**
- [lo] P. Briigger, Ph. D. Thesis, No. **858,** University of Fribourg, **1983;** R.-A. Fallahpour, Ph. D. Thesis, University of Zurich, **1994;** R.-A. Fallahpour, A. Linden, A. J. Rippert, H.-J. Hansen, *Helv. Chim. Acta,* in preparation.
- [I **11 Y.** N. Porshnev, E. M. Tereshenko, *Zh. Org. Khim.* **1975,** *II* **(2), 462.**
- **[I21 Y.** Chen, R. W. Kunz, P. Uebelhart, R. H. Weber, H.-J. Hansen, *Helv. Chim. Acta* **1992, 75, 2447.**
- [13] P. Uebelhart, H.-J. Hansen, *Helv. Chim. Acta* **1992, 75, 2493.**
- **[I41** Y. Matsuhara, Sh. Takekuma, K. Yokoi, H. Yamamoto, T. Nozoe, *Bull. Chem.* Soc. *Jpn.* **1987,60, 1415.**
- **[I51** Y. Matsubara, M. Morita, Sh. Takekuma, T. Nakano, H. Yamamoto, T. Nozoe, *Bull. Chem.* Soc. *Jpn.* **1991, 64, 3497.**
- **(161** L.T. Scott, C. M. Adams, *J. Am. Chem. SOC.* **1994, 106,4857.**
- **[17]** K.-H. Zeller, in 'Houben-Weyl, Methoden der organischen Chemie', 4th edn., Georg Thieme Verlag, Stutt gart, **1983,** Bd. **5/2c, p.** 408ff.
- [I81 **K.** Hafner, H. Diehl, H.U. Suss, *Angew. Chem.* **1976,88, 121;** *ibid. Int. Ed.* **1976,** *IS,* **104.**
- **[19]** W. Bernhard, P. Briigger, J. J. Daly, P. Schonholzer, R. H. Weber, H.-J. Hansen, *Heiv. Chim. Acta* **1985,68,** 41 **5.**
- **[20]** R.-A. Fallahpour, H.-J. Hansen, *High Pressure Res.* **1992,II, 125.**
- **[21]** K. Hafner, H. Kaiser, *Org. Synth. Coll. Vol.* **1973,5, 1088.**